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Preface 

This User Manual documents the collaborative code development work with my colleagues, Tony 
De Groot and Bob Sherwood. Our efforts represent the majority of the original work in the parallel 
algorithm design and development for the ParaDyn Project. Doug Speck, Elsie Pierce, and Vic 
Castillo are now substantive contributors to the ParaDyn Project. Doug and Elsie, in particular, 
have made it possible to quickly design flexible binary databases (MILI) and have developed 
significant enhancements to the GRIZ visualization software. Their work paves the way for the 
visualization capabilities needed when using parallel computers with hundreds and thousands of 
processors. 

Analysts provide the insights needed to turn our software development into an effective production 
tool for finite-element engineering analysis. At the Lawrence Livermore National Laboratory 
(LLNL) Dan Badders, Tony Lee, and Tony DePiero entered the turbulent waters of massively 
parallel computers earliest and have provided very valued input to our code development efforts. 

Raju Namburu and Photios Papados are collaborators from the Army Research Laboratory (ARL) 
and the Engineer Research and Development Center (ERDC). They led the way to the first 
multimillion element calculations on Department of Defense high performance computers. John 
Benner and colleagues from the Los Alamos National Laboratory (LANL) were the first to use the 
ParaDyn program on over 1000 processors. 

We especially appreciate the very valuable comments and support that our collaborators from ARL, 
ERDC, and LANL have provided for our code development efforts. 

Carol Hoover 
Methods Development Group 
Mechanical Engineering Department 
Lawrence Livermore National Laboratory 
Livermore, California 9455 1-7808 
925-422-1556 hooverl @llnl.gov 
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Abstract 

ParaDyn is a parallel version of the DYNA3D computer program, a three-dimensional explicit 
finite-element program for analyzing the dynamic response of solids and structures. The ParaDyn 
program has been used as a production tool for over three years for analyzing problems which 
range in size from a few tens of thousands of elements to between one-million and ten-million 
elements. ParaDyn runs on parallel computers provided by the Department of Energy Accelerated 
Strategic Computing Initiative (ASCI) and the Department of Defense High Performance 
Computing and Modernization Program. Preprocessing and post-processing software utilities and 
tools are designed to facilitate the generation of partitioned domains for processors on a massively 
parallel computer and the visualization of both resultant data and boundary data generated in a 
parallel simulation. This manual provides a brief overview of the parallel implementation; 
describes techniques for running the ParaDyn program, tools and utilities; and provides examples 
of parallel simulations. 
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BACKGROUND 

Significant speed gains (for example, factors of sixty or more on sixty-four processors) are being 
achieved for engineering design calculations on parallel computers with as few as a hundred 
processors using ParaDyn, the parallel version of the DYNA3D program [l]. The latest massively 
parallel computers with thousands of processors now make it possible to design engineering 
models for mechanical system analysis with multiple component parts as well as to add more detail 
and complexity in the models for components. ParaDyn and DYNA3D are explicit finite-element 
programs designed to solve for the nonlinear, transient response of solids and structures. The two 
programs, contained within a single source, are developed by the Methods Development Group at 
the Lawrence Livermore National Laboratory (LLNL). The web site, http://www.llnl.gov/eng/ 
mdg/mdg_home.html, provides general information and online documentation about the complete 
family of themomechanical programs developed in the Methods Development Group. 

Parallel computers are now commonplace in our computing environment. Computers with speeds 
ranging from 1 to 100 TeraOps ( 10l2 to 1014 operations per second) and thousands of processors 
will be delivered through the year 2004 to the Accelerated Strategic Computing Initiative (ASCI) 
Program. These computers dominate the high-end computing at LLNL. More modest parallel 
workstation clusters with ten or twelve processors support the Institutional Programs at LLNL. 
ParaDyn is implemented using the Message Passing Interface (MPI) standard. This standard makes 
it possible to develop parallel engineering applications that run on both distributed memory 
massively parallel computers and also shared memory workstation clusters. A summary of the 
computer resources at LLNL may be viewed at http://www.llnl.gov/asci/platforms and http:// 
www.llnl.gov/sccd/FAST.resources.html. 

The Department of Defense High Performance Computing and Modernization Program is also a 
very strong participant in acquiring hardware and developing software for next-generation 
massively parallel computers. Computer characteristics in terms of size, speed, and number of 
processors at the DOD Major Shared Resource Centers (MSRCs) are summarized in the links 
provided by the Program Office web site at http://www.hpcmo.hpc.mil. These data illustrate the 
continuing significant increase in our parallel computational speeds and capacities. 

ParaDyn is a parallel production program. Code development efforts are now directed toward 
optimizing the parallel algorithms, developing parallel preprocessing and post-processing 
software, and developing software tools for engineering optimization studies. Concurrent with the 
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parallel development effort, many code developers for the DYNA3D program are contributing new 
algorithms, elements, and material models to enhance the mechanics modeling capabilities. A 
single source encompassing both the ParaDyn and DYNA3D algorithms makes it possible to 
naturally migrate the DYNA3D enhancements into the production ParaDyn program. Finally, 
coupled programs for thermal, mechanical, and fluid analysis are being designed for parallel 
computers. A production capability for coupled analysis is possible in the next few years. 
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2.0 OVERVIEW OF PARADYN 

2.1 Introduction 

Advances in the development of parallel algorithms for explicit finite-element analysis and domain 
partitioning techniques have led to scalable production applications using ParaDyn. This has 
resulted in several benefits to our engineering design programs. Firstly, calculations are now 
performed in a day or less for problems that previously ran over several weeks. Secondly, new 
models are being generated for mesh sizes between one-million and ten-million elements. This is 
an order of magnitude larger than the largest models possible in the past. Finally, longer time 
simulations (problems running for a few million steps) for small to moderate sized problems are 
now being run on both massively parallel computers and workstation clusters. 

Analysts play an important new role in preparing models for parallel computers. The meshes are 
increasingly much larger and more complex. New validation tools are needed for the mesh 
generation step, specification of boundary loads and constraints, and defining facets on interfaces. 
In addition, the modeling of contact interfaces can have a significant effect on the parallel 
performance and scalability. Optimizing the performance and achieving scalability of parallel 
contact algorithms is particularly challenging. Two distinct forms of parallel contact algorithms 
have been developed in ParaDyn and will be discussed in the sections on parallel contact. 

Current and future parallel algorithm development is focused on contact algorithm research and 
also on providing the necessary automated modeling tools for the analyst. The development of the 
GRID visualization tool [2] based on the new MIL1 (Mesh YO Library) software [3] is one step 
toward achieving this goal. In addition, we anticipate further research in numerical methods to 
enhance the scalability of parallel contact algorithms. 

This manual is available in PDF form for interactive viewing. In some sections the text is displayed 
in either red or blue. The blue highlighting indicates text passages that are included in a version of 
the manual designed for a specific computer or site location. Thus, the blue text indicates 
conditional text which has been generated with the particular version of the manual being viewed. 
Red text is used to highlight cautionary notes. For instance, red text is used to highlight a warning 
message to copy output files between ParaDyn runs when those files would otherwise be 
overwritten by a subsequent run in the same directory. 
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To prepare input data and select control options and flags for the ParaDyn program, follow the 
discussions in the DYNA3D User Manual [ 11. An online manual for DYNA3D is available on the 
home page for the Methods Development Group, http://www.llnl.gov/eng/mdg/mdg_home.html. 
Instructions for using the new preprocessing and post-processing software for parallel simulations 
are included in this manual. In this manual the term preprocessing refers to the software used after 
the mesh generation step to prepare the model for the analysis with the ParaDyn program. More 
specifically it refers to the partitioning of the model. Computer-specific instructions and example 
problems are provided here to illustrate how to run a ParaDyn analysis on a parallel computer. 
Further documentation for the preprocessing software for partitioning meshes for ParaDyn is 
available online with the ParaDyn software. This documentation plus installation instructions are 
also available in an LLNL UCFU Report [4]. And finally, some standard features in DYNA3D 
requiring additional documentation for a parallel analysis are included in this manual. 

- 

A set of typeface conventions is followed throughout this manual to allow the reader to easily 
distinguish between commands, parameters, and computer generated text. Commands 
that appear in bold type should be entered verbatim. Parameters that appear in italic type should 
be given values when included in the input. Computer generated text, such as error 
messages or default file names, is printed in a typewriter-like (Courier) font. In text 
passages file names appear in italic type for clarity. 

The next sections provide introductory discussions about parallel algorithms and computers. 
Section 2.2 discusses the parallel finite-element model and describes partitioning methods. Section 
2.3 discusses parallel performance and scalability measurements. Section 2.4 characterizes contact 
interfaces and their implementation in parallel. This section concludes with guidelines for 
modeling contact interfaces with parallel algorithms. 

2.2 The Parallel Finite-Element Model 

A successful strategy for parallel implementation of the explicit finite-element method is based on 
dividing the mesh among the processors and executing ParaDyn on a subdomain in each processor 
[ 5 ] .  The elements from the mesh are divided into subdomains so that each processor has 
approximately the same amount of calculations to perform in a timestep. The nodes on the 
boundaries of a subdomain are referred to as shared nodes. Nodal force data for shared nodes are 
communicated between processors when the nodal force updates are calculated. The nodal points 
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on the subdomain boundaries may be duplicated (shared) in more than one processor. Mesh 
partitioning is the strategy for dividing the problem into subdomains and mapping subdomains to 
processors. This is illustrated for two processors in Figure 1. 

b 

Subdomains 

Processor 0 

Processor 1 

(b) 

Figure 1. Two subdomains on a finite-element mesh. (a) The original mesh with 48 elements 
is partitioned into two subdomains with 24 elements each. (b) The calculations involving 
nodal points on the cut plane (shown as patterned) are performed in both processors. The 15 
nodes on the cut plane are referred to as shared nodes. 

' The nodal forces consist of contributions from applied loads, contact interactions, and internal 
deformations. 

The internal force calculation for a shared node includes a contribution from elements in different 
processors. Each processor calculates a partial nodal force for the elements in its processor. These 
partial force contributions are communicated between the processors so that the total force 
computed for a shared node is the same in all processors within the error introduced by the ordering 
of the calculations. As much as possible, the ParaDyn algorithms are designed to store partial nodal 
force data for shared nodes until all contributions to the nodal force have been computed before 
communicating the shared data. 

Research in applied mathematics has led to efficient techniques for subdividing or partitioning the 
complicated unstructured meshes that arise in practical engineering applications [6-91. We use the 
METIS software from the University of Minnesota to partition finite-element meshes and contact 
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, (a) A simple finite-element mesh. 

surfaces. (For more information on METIS, see http://www-users.cs.umn.edu/-karypis/metis/ 
main.shtml). The METIS algorithms use a graph to represent the finite-elemenbmesh. 
Preprocessing software automatically produces the graphs needed for the mesh partitioning step. 

Mesh partitioning is accomplished by representing a finite-element mesh as a graph. A graph has 
vertices and interconnecting edges. The vertices and edges represent objects on the mesh. For 
finite-element meshes, the vertices of the graph correspond to elements (zones) in the mesh and the 
edges correspond to nodes in common between two connected elements. This is illustrated in 
Figure 2. 

Figure 2. A finite-element mesh and the graph representation of the mesh. (a) This simple mesh 
consists of two materials, shaded and unshaded. The shaded material requires twice as much 
calculation time as the unshaded material. (b) This is the graph of the mesh. The vertices are 
represented as circles and the number near a vertex is the computational weight of the vertex. 
The lines connecting the vertices are edges and represent the shared data between the vertices. 
The number specified along the edges represents the number of shared nodes between the two 
elements represented by the vertices. 

The graph represents the element-to-element connectivity for the mesh. The METIS algorithms 
find an optimal division of the graph corresponding to a specified number of subdomains. An 
important aspect of graph partitioning techniques is the use of weighting factors for both the 
vertices and edges. These weighting factors are used to balance the vertices into sets of roughly 
equal weight and thus, provide intelligent input control over the partitioning of the mesh. To 
illustrate this, the relative computational cost for a complex material model, a boundary condition 
or any other expensive part of the calculation, can be used to weight the vertices. Similarly, an edge 

Version 1.01 6 

http://www-users.cs.umn.edu/-karypis/metis


ParaDyn User Manual The Parallel Finite-Element Model 

in the graph represents the number of common nodes between the elements and can be 
appropriately weighted by a relative measure of the shared data communicated if the graph is cut 
on that edge. Figure 2b indicates the edge weights used for the few elements shown in Figure 2a. 

The partitioning task is automated completely in the preprocessing tool, DYNAPART, for any mesh 
geometry. This software was used for the assignment of a one-million element mesh to 128 
processors as shown in Figure 3. The colors are used to show the processor assignment for 
subdomains on the mesh. The mesh was developed to model a shock moving from the top vertex 
of the mesh in the direction of the half-cylindrical cavity region located half way down and on the 
left-hand side of the mesh. The mesh is zoned very finely at the top of the model to resolve the 
shock structure. As a result of this fine zoning the subdomains are much smaller at the top of the 
mesh than the subdomains on the lower part of the mesh where the zoning is coarse. The mesh lines 
are not shown in the Figure. 

Figure 3. Processor assignment for a one-million element mesh. Colors are used to 
distinguish the subdomains assigned to 128 processors. This problem without sliding 
interfaces scales linearly as the number of processors is increased up to roughly 1000 
processors. 
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2.3 Parallel Performance and Scalability 

The time required to deliver results on a parallel computer is the sum of the time for computing 
results on the processors and the time for communicating data between the processors. 

where 

- 
‘wc - ‘calc + ‘comm 

is the total elapsed time taken for the calculation (total wall clock time); ‘wc 
‘calc is the elapsed time the processors spend computing results; 
‘comm is the elapsed time the processors spend communicating shared data. 

Ideally, if the number of processors is doubled, the rate for delivering results will be doubled. In 
practice this linear scaling of the delivery rate with the number of processors breaks down when 
the communication time becomes significant compared to the amount of time processors spend 
computing results. 

If the parallel calculation is efficient, the delivery time zwc , for N processors will be 
approximately equal to 1 /N of the time for calculating the same results on one processor, z1 . 
Thus, a measure of the parallel efficiency is given by the following: 

P 

P 

The preprocessing software tools in DYNAPART provide convenient methods for selecting the 
maximum optimal number of processors to use for a ParaDyn simulation. Using more processors 
will result in no further improvement in delivering results and wastes computing resources. 

The optimal number of processors to select for a parallel calculation without contact can be 
estimated by specifying the minimum number of elements that can be allocated to a processor, 
which results in a negligible amount of communication time (ideally less than 10%) compared to 
the computation time for the deformation calculations. The statistics calculated by the partitioning 
software provide quantitative values for determining the optimal number of processors. These 
statistics will be discussed in the section describing the partitioning software tools. For current 
models, an estimate for the minimum number of elements to assign to a processor is between 1000 
and 2000. 

Almost all problems of interest include contact interface definitions, which are always more 
difficult to run. efficiently in parallel. 
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2.4 Scalable Parallel Contact Algorithms 

Designing efficient parallel contact algorithms is challenging because the surface motion is often 
unpredictable and new interfaces may appear dynamically. As a result, dividing the problem 
domain into subdomains that are optimal for calculating the element deformations will almost 
never result in an efficient division of the problem for the contact calculations. Hence, the ParaDyn 
software uses partitioning methods for the sliding interfaces that differ from the partitioning for the 
mesh. The results for the contact force calculations are communicated once in a timestep to the 
processors defined by the mesh partition. Similarly the nodal position and velocity updates are 
communicated from the processors defined by the mesh partition to the processors defined by the 
contact partitions once in a timestep. 

There are currently two parallel contact algorithms in the ParaDyn program [ 101 and selecting the 
algorithm to use will depend on the predictability of the surface motion as well as the relative size 
of the largest interfaces. In some problems, surfaces initially close together engage in small relative 
motion and the contact remains in a localized region of the mesh. We refer to this as local contact. 
Sliding interface types (1-3,5-10) in DYNA3DParaDyn are local algorithms. For other problems 
with large deformation or moving parts, the motion of the surfaces is not predictable. Thus, more 
sophisticated and computationally expensive searches for the surfaces in contact must be 
performed throughout the simulation. We refer to this as arbitrary contact. Examples illustrating 
arbitrary contact are a ball rolling on a plane, a surface folding on itself, or an automobile crash 
simulation. Arbitrary contact is implemented in DYNA3D automatic contact interfaces, types 12 
through 14. The automatic contact algorithm type 14 is the material erosion algorithm (SAND). 

The parallel algorithm implementing local contact allocates a contact interface (both the master 
surface and the slave segments or nodes) into one processor. This method is very efficient and 
useful for problems with many contact surfaces that are relatively small. The method can limit the 
scalability of the problem if there are large contact surfaces because the partitioning for contact 
may require more elements in a processor than is efficient for an optimal mesh partitioning. In this 
latter case, the problem can often be made more scalable by using the parallel automatic contact 
algorithms described below. 

The second parallel contact algorithm models arbitrary interface contact. The search for arbitrary 
contact is implemented in the DYNA3D automatic contact algorithms. The method uses a set of 
cells (buckets) for sorting and grouping surface nodes and segments into localized regions on the 
mesh. The parallel version of the algorithm partitions the buckets among the processors to balance 
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the contact calculations among them and minimize the communication of nodes and surface faces 
in cells with data that must be shared between processors. An additional step is needed in the 
automatic contact algorithm when contact surface motion requires a regeneration of the cells and 
sorting of the surfaces into the new cells. The frequency of the bucket-regeneration step is 
automatically computed or, in some unusual situations, can be specified as a user input. In ParaDyn 
the bucket-regeneration step induces extra communication during the timestep over which it 
occurs. Thus, it is important to rebucket as infrequently as possible to avoid the extra 
communication costs. 

The arbitrary contact algorithms are referred to as automatic contact algorithms in the DYNA3D 
documentation. The reason for this is that the faces on the contact surfaces are generated 
automatically in DYNA3D and ParaDyn. This is in contrast to the older more tedious method in 
which the contact interfaces are defined by the analyst when generating the mesh. For the large 
meshes generated for parallel simulations this is an extremely time consuming task. Furthermore, 
the contact interface definition is often a source of errors in the input file because of difficulties 
encountered during the part-merging phase of the mesh generation. 

The parallel contact algorithm in ParaDyn is selected by the DYNA3D sliding interface method 
used for modeling the contact. Sliding-interface types (1-3,5-10) are implemented by assigning 
each contact interface into a processor. Sliding interface type 11 (SAND) is not implemented in 
parallel because the equivalent interface is modeled in the more robust and newer automatic contact 
interface type 14. The single surface contact algorithm in type 4 is implemented as a full surface 
assigned to a processor. A more general version of single surface contact is contained within 
interface types 12 or 13. 

Sliding interface types 12 and 13 are identical in their parallel implementation. However, type 13 
provides options for controlling the search and other features as follows: 

Boxes can be defined to limit the domain of the search; 
Material can be included or excluded in the boxes for the search; 
Faces defined as in a type 3 interface can be specified rather than automatically generated. 

See the DYNA3D user manual in the keyword options section for a description of the input for 
sliding interface type 13. 
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The most commonly used sliding interface in DYNA3D is type 3. The same physical interface 
condition (sliding with friction and voids) can also be modeled with the automatic contact 
algorithm types 12 andl3. The parallel efficiency for either choice for the sliding interface may 
vary significantly depending on the details of the interfaces and the size of the model. The next 
sections compare the two forms of parallel contact algorithms. These comments provide guidelines 
for selecting which algorithm to use for an efficient parallel calculation. 

2.4.1 Parallel Local Contact 

The parallel local algorithm allocates each sliding interface fully in one processor. For more than 
one sliding interface, the DYNAPART preprocessing software distributes the set of interfaces 
among as many processors as possible. Special graph weighting methods are used for partitioning 
the contact interfaces and evenly distributing the contact calculations among processors. 
This algorithm is illustrated with the spin forming mesh shown in Figure 4. This model consists of 
a rotating plate formed into a hemispherical shape by rollers in contact with the plate surface. A 
four-processor partition for this problem cuts the plate into three concentric rings. The center ring 
and brushes form the sliding interface and are fully contained in one processor. An eight-processor 
partition for the problem cuts two of the rings in half. The sliding interface, the center ring and the 
rollers, remains uncut. 

The number of processors used for problems with local contact is often limited by the largest 
sliding interface. If the surfaces on the largest interface contain many more elements than the 
minimum number of elements that will provide a balanced calculation for the element deformation, 
then the optimal number of processors for the calculation will be determined by the contact 
calculations. A more subtle condition for large contact surfaces occurs when the partitioning cuts 
the mesh one element below the surfaces in the sliding interface. This results in a large amount of 
shared-node communication for processors with elements connected to the contact surfaces. 

~~ 
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Figure 4. Four and eight-processor partitions for a spin forming problem. The model 
paritioned for four processors divides the plate into three concentric rings. The eight- 
processor partition leaves the middle ring uncut. 

2.4.2 Parallel Automatic Contact 

For arbitrary contact defined with sliding interface types 12-14, the analyst avoids the very time 
consuming task of defining the contact surfaces in the model. However, the parallel algorithm for 
these interface definitions is more expensive for two reasons. First, the search for contact is an 
expensive step, both on single processor computers and on parallel computers. Furthermore, for 
problems with considerable surface motion, the parallel versions of these algorithms accrue 
additional communication costs because the surfaces must be redistributed periodically among the 
processors. This surface redistribution load balances the contact calculations. 

The efficiency of the parallel automatic contact can be improved by limiting the search domains 
with the DYNA3D keyword input options. Boxes may be used to delimit the search domains. 
Boxes save the computer time and storage required for the bucket sorts on the full mesh. This can 
save significant amounts of time for the large meshes designed for parallel computers. A further 
efficiency improvement is achieved with boxes by reducing the number of materials searched in 
each box using the material inclusiordexclusion options. 
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The parallel automatic contact algorithm is currently under very extensive development and 
optimization. The largest effort underway now is to load balance the parallel automatic contact. 
Until this effort and several other new techniques to optimize the algorithm are more complete, it 
is recommended that data sets using automatic contact definitions be tested for performance before 
use in production simulations. ParaDyn developers would be grateful for any benchmark tests that 
demonstrate a need for improved optimization when using the automatic contact algorithm. In 
return we will provide insights on modeling with the algorithms that may provide better 
performance. We will also use the benchmarks to guide our algorithm development for optimizing 
the method, particularly for models with rapidly changing surface topologies, nested surfaces, and 
meshes with moving objects. 

2.4.3 Concluding Remarks on Parallel Contact 

For a complex mesh it may be beneficial to use both local and arbitrary contact algorithms and to 
provide multiple instances for each type of contact. An obvious advantage in doing this is that the 
regions on a mesh without any contact are not included in either the partitioning for local contact 
or the search domains for arbitrary contact. 

For problems with a relatively small amount of interface surfaces compared to the volume of 
materials and with localized interfaces (types 1-3 and 5-10), the balance numbers provided by the 
partitioning software can be used for selecting the number of processors to use. Furthermore, the 
parallel efficiency may be determined by the size of the largest contact surface. 

For efficient parallel arbitrary contact (automatic contact) it is very important to use DYNA3D 
input options to limit the search domains. This algorithm is currently undergoing extensive code 
development for parallel optimization. 

2.5 Boundary Conditions and Constraints 

Parallel versions of boundary conditions and constraints are treated both in the partitioning 
software as well as in ParaDyn. Because the partitioning software uses special processing on 
selected boundary conditions and constraints, it is important to know which boundary conditions 
and constraints are treated with partitioning and how this affects the overall partitioning. 
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The following DYNA3D options are treated with the partitioning software [4,10]: 

Symmetry planes with failure 
Nodal forces and follower forces 
Nodal constraints 
Tie-breaking shell slidelines 
Tied node sets with failure 
Rigid body joints 
Shell-solid interfaces 
Discrete springs, dampers and masses 
One-dimensional slidelines. 

- 

These DYNA3D objects contain nodes and elements that must be assigned to a single processor 
rather than divided across more than one processor. Nodes that need to be kept together are 
assigned to Special Nodal Points ( S N P )  sets in the partitioning software. Associated with each of 
the S N P  sets is a Special Element (SE) set. The SE set consists of all elements that contain one or 
more nodes in the corresponding SNP set. Each S N P  set and its associated SE set must be fully 
contained in a processor. As a result, large SNP or SE sets can constrain a mesh partitioning and 
limit the number of processors that can be used for the problem. Reference [4] and the online 
version provide examples. 
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~~ ~~ ~ ~ ~ 

Step 2. Mesh Partitioning 

Determine the optimal number of processors to use. 

3.0 ANALYSIS WITH PARADYN 

Display results on a paral- 
le1 computer. 

An important consideration in our parallel algorithm development has been the requirement to 
provide automated tools for developing models for parallel computers. Automated tools have been 
developed for the new steps needed in either preprocessing the mesh or post-processing the binary 
plot databases.This chapter describes the ParaDyn software and how to use it. 

3.1 The ParaDyn Software Set 

The steps for running a PaaDyn simulation are shown in Figure 5. 

Display results on a work- 
OR station. 

Step 1. Mesh Generation 

Generate the mesh with special attention given to contact. 

Step 3. ParaDynAnalysis 

Run the ParaDyn analysis. 

Figure 5. Steps in preparing and running ParaDyn simulations. 

The new preprocessing step for mesh partitioning is automated with script files, DYNAF'ART and 
DYNAPARTAGAIN. These files and other new utilities for parallel simulations are summarized in 
Figure 6. 

The ParaDyn program is usually run with a utility, such as MPIRUN or POE, that copies the 
executable to the processors on a parallel computer. Most large simulations are run using batch 
processing software supplied by the Computer Center. Script files are often made available in 
public file systems to automate batch runs. 
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~~ ~ ~ 

File combiners: XMILICS Families by One family for state or 
state and time his- COMBINETHS processor of time history data 

1 tory data state or time 
history data 

There is a new step in post-processing of the binary databases with either state data or time history 
data. This step involves combining the plot database families generated on each processor into a 
single plot database family that can be viewed with GRE4 or THUG. The two utilities, XMlLICS 
and COMBINETHS, are used for combining the state and time history plot databases, respectively. 
GRIZ4 and THUG can be used to visualize the results on either a single node on the parallel 
computer or on a workstation. Often for larger problems, the combined databases are transported 
with FTP to a workstation for visualization. 

Task 

Mesh Partitioning 

Parallel DYNA3D 

The software products used for ParaDyn simulations are summarized in Figure 6.  The next sections 
describe these products in detail. The final section summarizes the steps for using ParaDyn 
software and can be used as a handy reference once the details of each step are understood. 

Software Input output 

DYNAPUT DYNA3D input Partition map, plot file for 

ParaDyn DYNA3D input Families of files: plothime 
history output, restart, ... 

DYNAPARTAGAIN the partitioned mesh 

Partition map 

Visualization GRIZ4, THUG State, time his- Screen display, RGB out- 
tory databases put, .... 

3.2 PATH Variable for ParaDyn 

The directory containing ParaDyn software must be included in the list in the PATH variable. The 
following SET PATH command added to the .cshrc file places the directory containing ParaDyn 
software products into the path variable. 

set path = (/usr/appshin/mdg $path) 
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3.3 Partitioning a Model 

Before running ParaDyn, the model (including mesh, contact surfaces, constraints, and boundary 
conditions) must be partitioned using DYNAPART. It is often desirable to partition the model 
several times in order to select the number of processors to use for the model. The partitioning 
software provides statistics for guiding this selection process. DYNAPART and a related tool, 
DYNAPARTAGAIN, are script files which run several utilities for mesh and contact surface 
partitioning. The statistical output is written into the logfile generated when running these script 
files. Two utilties run within the scripts, METIS and PFGEN, produce the statistics for the 
partitioning of the model. 

Since the partitioning software generates a number of intermediate files in the current working 
directory, running the partitioning scripts from a subdirectory is recommended. This conveniently 
groups the files containing the results generated for each mesh that is partitioned. The DYNAPART 
script is used the first time a mesh is partitioned. If the files from the first partitioning of a mesh are 
not destroyed, DYNAPARTAGAIN can be used for subsequent partitioning of the same mesh for 
a different number of processors. DYNAPARTAGAIN uses results saved from the DYNAPART 
execution and consequently, can skip over some of the time consuming steps in the DYNAPART 
script. It is very advisable to use DYNAPARTAGAIN when repartitioning a large model. 

As a rule of thumb, an initial estimate for the optimal number of processors to use is roughly 2000 
elements per processor. This estimate may be inadequate if contact surfaces, boundary conditions, 
or nodal constraints are restricting the partitioning (See discussions in sections 2.4 and 2.5.) 

The execute lines for DYNAPART and DYNAPARTAGAIN are identical. The first argument is the 
name of the DYNA3D input file and the second argument is the number of processors requested 
for the mesh partitioning. 

dynapart infile np 
dynapartagain infile np 

The output from the mesh partitioning is a file that is referred to as the partition file. The name of 
the partition file is in fknp .  For the d3sumpl input file for DYNA3D, the file name for a four- 
processor partition is d3sump1.4. The first several lines in the partition file contains partitioning 
statistics for the problem and the remainder of the file contains the list of element and node 
assignments to each processor. This file can be viewed with a text editor. 
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The partitioning scripts also generate a plot database that can be used to visualize the subdomains 
of the partitioned model. The root name for the family of files is parplt. GRIZ4 can be used to 
visualize this database. The result is a coloring of the mesh subdomains by processor and a 
corresponding map of color values associated with the processors. 

Caution: The database family, pniplt, is overwritten when the partitioning sciipts are run again in 
the same directory. The database can be saved by renaming it before running the next partitioning 
of the model. 

The parallel efficiency for a particular mesh partitioning can be evaluated from statistics provided 
on the screen or in a log file generated by the partitioning scripts. The METIS software calculates 
and prints statistics for evaluating the quality of the partitioning. This output is listed as the 
Balance number from METIS. The best balance is obtained when this number is as close as 
possible to a value of 1.000. Other statistics indicating the quality of the partitioning are printed by 
another tool, PFGEN, which is run by the scripts. The PFGEN output lists statistics about the 
shared-node communication resulting from the partition. The Uniformity number output by 
PFGEN measures the spread and the quantity of the communication among the processors. Again 
the best value for the communication uniformity is a number close to 1.0. Figure 7 is an excerpt 
from the screen output containing these statistics. 

The balance and uniformity numbers do not provide a measure of the relative amount of 
communication occuring within any given processor. These statistics can be obtained by inspecting 
the partition file. The total number of nodes in a processor and the number of shared nodes in a 
processor are listed in the first lines of the partition file. S e e  Figure 8. For an efficient calculation 
it is useful to keep the ratio of the number of shared nodes to the total number of nodes as small as 
possible. Ideally this ratio would be ten percent or less. 
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Metis output statistics 

PFGEN output statistics 

-- Starting to generate the partition-assignment file. 

Number of Number of 
Node Adjacent 

Communications Processors 

Average per processor: 875.0 3.1 
Max on any processor: 1520 5 

Total on all processors: 14000 50 

Uniformity: (max / average): 1.737 1.600 

Figure 7. An excerpt from the screen containing Metis and PFGEN output statistics. 

It may be convenient to save the screen output from the scripts into a file while also viewing the 
results. The saved log file can be used to inspect the statistics as well as error messages generated 
when the DYNAPART scripts are run. The UNIX TEE command can be used to do this as follows: 

dynapart infle np I& tee infle.log 

The details of the nodal communication (rather than averages) are listed in the first few lines of the 
partition file, infZe.np. These can be conveniently examined with the UNIX HEAD command. 

head -20 in$le.np 
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The results of this command are shown in Figure 9. 

Example: Finding an optimal number of processors 
This example illustrates the use of the mesh partitioning tools to find the optimal number of 
processors to use for the first example problem included with the DYNA3D program. 

Step 1. Set up a directory and partition the problem for two-processors. 
The name of the input file is d3sampl. The directory for the partitioning is named partition. 

mkdir partition 
cd partition 
In -s Jd3sampl d3sampl 

The UNIX utility LN links the d3sarnpl file in a dfferent &rectory from the current &rectory 
(partition) without making a copy. This saves disk space when when working with large files. It is 
also convenient to use LN when making runs using the same input file and varying the number of 
processors. This is the case when studying the scaling and efficiency for a model. 

Execute DYNAPART the first time the mesh is partitioned. 

dynapart d3sampl2 

The output files from this partitioning are d3sampl.2 and the plot database, parplt. Next, visualize 
the partitioned mesh with GRIZ4. 

griz4s -i parplt 

Step 2. Look at the statistics from the DYNAPART interactive session. 
The statistics from PMETIS and PFGEN are shown in the excerpt from the log file in Figure 9. 
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Running PmTIS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
METIS 2.0  Copyright 1995,  Regents of the University of Minnesota 

Graph Information _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ _ _ - _ _ _ - - _ _ - - _ _ _ - - _ -  
Graph: d3sampl.grfal1, Size: 972, 19062, Parts: 2, Cto: 100 

Options: SHEM, BGKLR, GGPKL, Rec-Partition 

Recursive Partitioning... _______________-________________________-_  
Edge-Cuts: - 

2 -way 
360 

Balance: 1.000 

Running PFGEN 

_ _  Starting to generate the partition-assignment file. 

Number of Number of 
Node Adjacent 

Communications Processors 

Average per processor: 37.0 1.0 
Max on any processor: 37 1 

Total on all processors: 7 4  2 

Uniformity: (max / average) : 1.000 1.000 

++ Finished generating the partition-assignment file. 

Figure 8. Partitioning statistics for a two-processor partition of the example mesh 

Both of these statistics, the Metis Balance number and the Uniformity number written by PFGEN, 
suggest that the problem may be efficient if more processors are used for the partitioning of the 
model. 
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The following are the detailed statistics for the shared nodal data obtained by running the HEAD 
command on the partition file, d3samp1.2. Notice that only 37 if the 486 nodes in each processor 
are shared. 

Detailed statistics from the partition file, d3samp1.2 

bar impact problem (g-m cm microsec) 1NGDYl.dat 97 large 
# NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS 

1369  972 0 0 0 2 

# Number of Nodal Points per Processor: Processors 0 to 1 

# Number of Hexagonal Elements per Processor: Processors 0 to 1 

# Total number of Shared Nodal Points per Processor: Processors 0 to 1 

703 703 

486 486 

37  37  

# Number of Adjacent Processors per Processor:Processors 0 to 1 
1 1 

Figure 9. Total number of nodes, elements and shared nodes by processor for the two-processor 
partition 

Step 3. Use DYNAE'ARTAGAIN to partition the model for four processors. 

dynapartagain d3sampl4 

The partition file for this step is d3samp1.4 and the plot database for the partitioned mesh 
overwrites the plot database for the previous partitioning. 

The balance number from METIS for this partition is 1.000 indicating an even distribution of the 
computing work and communication among the four processors. The uniformity statistic from 
PFGEN shows that some processors have more communication. An inspection of the partition file, 
d3samp1.4, shows two of the processors engage in twice as much communication as the other two. 
The communicated nodes represent roughly 10% and 20% of the total number of nodes in the 
individual processors. These results are shown in Figure 10. 
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Partitioning d3sampl for 4 processors 

Running PFGEN 
_-  Starting to generate the partition-assignment file. 

Number of Number of 
Node Adjacent 

Communications Processors 

Average per processor: 55.5 1.5 
Max on any processor: 7 4  2 - 

Total on all processors: 222 6 

uniformity (max / average): 1.333 1 .333 

++ Finished generating the partition-assignment file. 

Detailed statistics fram the partition file, d3sarqpl.4 

bar impact problem ( g m  cm microsec) 1NGDYl.dat 
# NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS 

1369 972 0 0 0 4 

# Number of Nodal Points per Processor: Processors 0 to 3 

370 370 370 370 

# Number of Hexagonal Elements per Processor: Processors 0 to 
243 243 243 243 

88 large 

3 

# Total number of Shared Nodal Points per Processor: Processors 0 to 3 

37 7 4  37  7 4  

# Number of Adjacent Processors per Processor: Processors 0 to 3 

1 2 1 2 

Figure 10. Total number of nodes, elements and shared nodes by processor for the four-processor 
partition 

Step 4. Use DYNAPARTAGAIN to partition the mesh for eight processors. 
This partitioning is most likely to be poor based on the four-processor partition. The results shown 
below verify this. 

dynapartagain d3sampl8 
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The METIS balance statistic is 1.004 when the model is partitioned for 8 processors. Nevertheless, 
an inspection of the partition file shows that the number of shared nodes per processor varies 
between 22% and 40% of the total number of nodes in each processor. This is an unacceptably high 
amount of communication. The statistics in the partition file are shown below. 

We can conclude from the partitioning for two, four and eight processors that the optimal number 
of processors to use for this problem is four. 

Detailed statistics from the partition file, d3samp1.8 

bar impact problem ( g m  cm microsec) 1NGDYl.dat 
88 large 
# NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS 

1369 972 0 0 0 8 

# Number of Nodal Points per Processor: Processors 0 to 7 

# Number of Hexagonal Elements per Processor: Processors 0 to 7 

209 206 208 208 209 2 07 209 2 07 

122 1 2 1  122 1 2  1 122 121 122 1 2 1  

# Total number of Shared Nodal Points per Processor: Processors 0 to 
82 82 83 46 46 83 83 83 

# Number of Adjacent Processors per Processor: Processors 0 to 7 
2 2 2 1 1 2 2 2 

7 

Figure 11. Total number of nodes, elements and shared nodes by processor for the eight-processor 
partition 

3.4 File Name Sequences 

The names of restart files and plot databases generated in a ParaDyn run are different from those 
for a DYNA3D simulation.The names are lengthened to include a processor number in the string 
for the root name for the database. More generally, each processor generates a set of files equivalent 
to a DYNA3D run on a single processor. The files are distinguished from the standard set in a 
DYNA3D run by a shortening of the root name to three characters and the inclusion of a processor 
number in the string for the name. For a problem running on 1000 or more processors, the length 
of the string appended to the root name is adjusted to accommodate the number of digits contained 
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PO P1 
m-pO00A m-pOO1A 
m-PO00 m-PO01 

in the number of processors used. For example, for 1024 processors, four digits are added to the 
root name. Similarly for 10240 processors, five digits are added to the root name.The plot database 
names shown in Figure 12 are the default names generated for MIL1 state database files for a 
problem with less than 1000 processors. 

p2 p3 

m-pO02A m-pO03A 
m-pOO2 m-pOO3 

m-pOOOO2 

... 

... 

I m-pOOOO1 I m-p00101 I m-p00201 I m-p00301 

m-p00 102 m-p00202 m-p00302 

... ... ... 

... ... ... 

PO P1 p2 

I m-pOOO99 I m-pOO199 1 m-pOO299 I m-pOO399 

p3 

1 2. Restart database names: Root names dmp 

dmpOOOp0 1 

dmpooop02 

dmpOOlp0l dmpOO2pO 1 dmpOO3pO 1 

dmpOO lp02 dmpOO2pO2 dmp003p02 

PO Pl p2 

1 dmpOOOpO3 I dmpOOlpO3 I dmp002p03 1 dmp003p03 

p3 

I 3. Text output file names 

frc000 frc00 1 frcOO2 frcOO3 

d3hsp I d3hsp001 I d3hsp002 I d3hsp003 

3.5 ParaDyn Command Lines 

The partition file must be copied into a file named partjile before executing ParaDyn. Do not 
remove the original partition file. You can also use a soft link if the files are big. This is explained 
in the examples. The partition file is used with the post-processing software. 

~ ~~ 
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The ParaDyn execute line arguments are identical to the DYNA3D execute line. The restarts for 
ParaDyn likewise use the same execute line as those used in executing a DYNA3D restart. 
The command lines for a ParaDyn initial run and a restart execution are illustrated in the following 
two examples. 

paradyn i=injile I=Jilelength 
paradyn i=restart r=dumpfile l=filelength 

paradyn i=inJile q=nseconds 
paradyn c=lastdump q=nseconds 

The first set of execute lines uses the standard input lines for restarts described in the DYNA3D 
manual. The second set of execute lines illustrates a restart method which starts from the last 
successfully written restart file. 

Caution: The standard output files, (d3hsp, d3hsp0001, ...) are overwritten when a subsequent run 
is made in the same directory. It is generally a good practice to at least save the file d3hsp into a 
different name between restarts of the problem. This output file, d3hsp, usually has results that are 
of value at the end of a long sequence of restarts. For instance, filenames, input options, and 
dynamic relaxation results are written into the file d3hsp. 

The c= option specifies the name of a file which is always lastdump. ParaDyn generated the 
lastdump file at the end of the most recent run made in the directory. ParaDyn writes one line in the 
lastdump file. This line conains the name of the dump restart file which has the last successfully 
written state data. This is a very important option to use on some parallel computers, particularly 
the ASCI Blue computer at LLNL. 

Notice that it is not necessary to specify an input file for a restart execution. If the input file is not 
specified, all input options will remain the same as those specified in the preceding run. These 
values from the previous run are stored in the restart dump file and read in during the input phase 
of the restart run. 

The q option provides a capability for terminating a problem on the ASCI Blue Pacific system. The 
value, in seconds, specifies the number of seconds (by the wall clock) to run the ParaDyn 
simulation before ParaDyn stops itself with a normal termination. This option is often used to allow 
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the analyst to specify a wall-clock termination time slightly shorter than the batch time he selects. 
The extra time allows for final file writes and close operations for the database families and other 
output files. 

The 1= option provides a method for increasing the maximum file length for each member of a 
database family of plot files. The size specified is in units of Megabytes. Caution: If the file length 
option is used on the initial ParaDyn run, it must be used on all subsequent restarts. 

Example: Execute lines for ParaDyn 
Consider an initial ParaDyn run using the DYNA3D input file, d3sampland a restart run using an 
input data file, irestart. Following the naming convention in Figure 12, the initial run and restart 
run are executed with the following ParaDyn input arguments. 

paradyn i=d3sampll=lO 
paradyn i=irestart r=dmp000p011=10 

Notice, the file lenth is specified on both the initial run and on the restart. 

This next example illustrates the use of the q= termination option. 

paradyn i=d3sampl q=3000 1=100 
paradyn c=lastdump q=3000 1=100 

This problem will be submitted to batch to run for one hour (3600 seconds) and ten minutes before 
the end of the run (afer 3000 seconds) ParaDyn will call the termination routine to close files and 
exit. The maximum length of the files in the plot databases is set to 1 0 0  Megabytes. The name of 
the restart file is the name listed on the first line of the file named lastdump. 

3.5.1 ParaDyn Run Interactively 

ParaDyn can be run interactively using the POE utility on an ASCI Blue computer at LLNL. This 
system has four processors per node and five hundred or more nodes. The POE utility runs ParaDyn 
with an input specifying the number of nodes and optionally, the total number of processors. The 
options for specifying the number of nodes and processors are inserted between the ParaDyn 
command and the execute line options for ParaDyn. If only one processor per node is being used, 
then it is sufficent to simply specify the number of nodes as follows: 
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poe paradyn -nodes numnodes executeline 

More than one processor per node can be used by specifying the number of nodes with -nodes and 
the total number of processors with -procs. 

poe paradyn -nodes numnodes -procs np executeline 

Example: Interactive ParaDyn run on the ASCI Blue Pacific 
The following are command lines for executing ParaDyn with the DYNA3D test case 1 as an input 
file and using either four or five processors. 

poe paradyn -nodes 4 -procs 1 i=d3sampl 
poe paradyn -nodes 1 -procs 4 i=d3sampl4 
poe paradyn -nodes 2 -procs 5 i=d3sampl4 

The first example above will run using one processor on each of four nodes. The second example 
will run with four processors on one node. The third example will run on two nodes using five of 
the eight processors. 

ParaDyn can be run interactively using the MPIRUN utility on an Origin 2000 computer. The 
MPIRUN utility runs ParaDyn for np processors as follows. 

mpirun -np np paradyn dyna3d execute line 

Example: Interactive ParaDyn run on the Origin 2000 
The following is the command line for executing ParaDyn with the DYNA3D test case 1 as an input 
file and using 4 processors. 

mpirun -np 4 paradyn i=d3sampl 

3.5.2 ParaDyn Run with Batch 

ParaDyn production simulations are run under the DPCS batch processing system on the ASCI 
Blue computers at LLNL. To set up a problem for batch, a script file is prepared and then submitted 
to the batch system with the PSUB utility. Lines included in a typical script file for a ParaDyn 
simulation are shown in Figure 13. 
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The script file is submitted to batch for processing using the PSUB utility. 

psub scrip@Ze 

Use the PSTAT utility for interrogating the status of runs submitted with PSUB. A status of RUN 
indicates the job is running on the parallel computer. Q p e  SPJSTAT to further check on the status 
of the run after PSTAT indicates it is in a RUN state.The online MAN pages can be viewed to study 
other options provided by the PSUB and PSTAT utilities. 

~ 

# PSUB -eo 
# PSUB -tH 2:oo 
# PSUB -In 8 

# Job is to run for a maximum of 2 hours 

# PSUB -g 32 
printenv 
echo "started at" 
date 
cd /p/gE/loginname/dynatests 
# Allow 10 minutes (600 seconds) for file cleanup 
poe paradyn i=dynin q=6600 1=100 
echo "ended at" 
date 

Figure 13. A typical batch script file for a ParaDyn simulation 

3.6 Visualizing ParaDyn Results 

There are two choices for post-processing the state database output from a ParaDyn analysis. First 
the database families from the processors must be combined with the utility XMILICS. Then the 
results may be viewed on the parallel computer with GRIZ4. Alternatively, the combined database 
families may be transported to a workstation and viewed with GRIZ4. 
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There are some tradeoffs to be made in selecting either of these choices. For large problems 
particularly, the rendering and the display of a frame sent over a network to a workstation can be 
as long as twenty or thirty minutes. In this case better interactivity is possible by using FTP to send 
the combined database over to a local workstation. The additional resources needed for this 
improved interactivity are twice the disk space on the parallel computer, a workstation with high- 
speed graphics capabilities, and enough disk space on the workstation for the full database. Even 
with this additional hardware, the viewing of results is delayed by the time it takes to FTP the 
databases to the workstation. In the future, parallel rendering and visualization tools will become 
available that will eliminate some of these delays. 

3.6.1 MILI Database Files 

MILI plot databases are new. The format for the MILI databases provide a considerable amount of 
flexibility for designing material templates that display results specific to each material type as well 
as the flexibility for selecting which state data fields should be included in a database generated by 
a parallel analysis. Equally as important, the menus in GRIZ4 will reflect those data fields, result 
fields, and names which have been written into the MILI files. GRIZ4 must be used for displaying 
MILI plot databases. 

Recent code development in both ParaDyn and DYNA3D require the use of the MILI database 
format. In addition, the MILI databases have been extensively tested in large benchmarks and in 
production runs at both Livermore and Los Alamos. For these reasons, we encourage their use. The 
old TAURUS database format used with ParaDyn is described in Section 4.5. 

The use of GRIZ4 is also strongly recommended because of its expanded capabilities to handle the 
menu- generation for MILI databases. In the future, Mili database formats will be developed to 
provide many new features for material models, to display new results (not currently in TAURUS 
databases), to highlight boundary conditions, and to provide flexibility for limiting the size of 
parallel databases. 

The MIL1 database software was released with ParaDyn version 1.01 and will be the default 
database type in future versions of ParaDyn. In addition, it is possible to select one or both database 
formats in the keyword control options input section of the input file. The keyword specification is: 

mili-plot milijlag 
endfree 
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The value of the flag is set to 1 to select the MIL1 database format and is set to 0 to deselect the 
database type. 

Example: Specify MIL1 for the plot database format in a ParaDyn analysis. 
Add the following keyword input to the keyword control options section of the input file. 

mili-plot 1 
endfree 

3.6.2 Combining Parallel Databases 
- 

The utility XMILICS combines the state database from a ParaDyn run. The combined databases 
can then be viewed with GRIZ4. The execute line for XMILICS is 

xmilics -i infileroot -0 outfleroot -c partfile 

The first argument is the root name for the families of state databases and the second argument is 
the root name for the output files with the combined databases. The third argument is the name of 
the partition file. 

The utility COMBINETHS combines the time history database from a ParaDyn run. The combined 
time history database can then be viewed with the THUG uility. The execute line for 
COMBINETHS is 

combineths inJleroot outfleroot partfile 0 0 

The first argument is the root name for the families of time history databases and the second 
argument is the root name for the output files with the combined databases. The last two arguments 
must both be 0. 

Example: XMILICS and COMBINETHS execute lines 

xmilics -i m-p -0 mout -c partfile 
combineths plt oplt partfile 0 0 

See Figure 14 for the list of output files generated with each combining utility. 
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XMILICS output f i l es  
moutA, mout00, moutol, mout02, mout03 ,....., 

COMBINETHS output f i l es  
otht00, otht01, otht02 ,.... 

Figure 14. The names of files in output databases from XMILICS and COMBINETHS. 

On the workstation or the parallel computer, these databases are viewed with the GRIZ4 and 
THUG utilities. 

griz4s -i mout 
thug -i otht 

3.7 Summarized Steps for Using ParaDyn 

Step 1. Set the PATH variable for the ParaDyn software. 

set path=(/usr/apps/bin/mdg $path) 
This line is added in the .cshrc file the first time the software is used. 

Step 2. Partition the mesh. 

mkdir partition 
cd partition 
In -s Jd3sampl d3sampl 
dynapart d3sampl2 
dynapart d3sampl4 
dynapart d3sampl8 
mv d3samp1.2 d3samp1.4 ../ 
cd .. 

Make a directory for partitioning. Find the optimal number of processors for the run. 

Step 3. Execute ParaDyn initial and restart runs 

mkdir rundir 
Make a directory for the simulation. Link the input and partition files into the directory. 
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cd rundir 
In -s Jd3sampl d3sampl 
In -s Jd3sampl.4 partfile 
paradyn i=d3sampl 

mv d3hsp hsprunl 
paradyn i=irestart d=dmp000p01 
mv d3hsp hsprun2 

Save the d3hsp output file between restarts. Input new options with the file irestart. 

Use the Zastdump file to get the name of the last successfully written restart dump file. There are no 
resets of the input options for the next restart. 

paradyn c=lastdump 

Step 4. Visualize the results. 

xmilics -i m-p -0 mout -c partfile 
combineths tht otht d3samp1.4 0 0 

Combine the state database and the time history databases. 

Move the combined state and time history databases to the workstation, if desired. View the results 
on either computer. 

griz4s -i mout 
thug -i otht 
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4.0 INPUT FOR PARALLEL SIMULATIONS 

This chapter describes data input and special instructions used for parallel simulations only. 
Instructions for running multiple ParaDyn analyses and special instructions for post-processing 
results written to text files are described here. 

4.1 Static Initialization and Dynamic Analysis 

Dynamic relaxation and stress initialization techniques are described in the DYNA3D manual. The 
following example shows one method for initializing a problem with a load, generating the stresses 
from a relaxation procedure, and starting a time dependent simulation. Three runs are used for this 
procedure. 

Step 1. Run the relaxation step first. 
This feature is activated by a flag on the load curve definition cards in the standard DYNA3D input. 

paradyn i=inputl 

This creates two dump files for each processor. For processor zero, they are dmpOOOpOl and 
dmpOOOpO2. 

Step 2. This step generates a stress output file. 
Restarting the previous run for one time step to generate the stress file. 

paradyn i=restart r=dmp000p02 

This run creates the stress file, d3sppp, where ppp is the processor number. 

Step 3. This steps runs a dynamic analysis using the stress file from the static initialization. 

paradyn i=input2 n=d3s 
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4.2 The NIKE-DYNA Link File 

The NIKE-DYNA link file is often used to start up a new run using stress results from a previous 
run on the same mesh. The details for this technique are described in section 2.19 of the DYNA3D 
manual. The first run to generate the stress file must include the following free format input to 
generate the output database with the stresses. The root name for the link file is specified on the 
following keyword input line. 

nikefile stressfiile 
endfree 

A ParaDyn execution with this input selecting the name, str, for the NIKE-DYNA link file will 
create database families for each processor labeled 

str001, str002, ... strppp, ... 

where ppp is the processor number. 

A second run uses the same input mesh but other parameters in the input, such as load curves, may 
be changed. (Although the control options can be changed, it is not a requirement, and the same 
data input file can be used for both runs.) The second run reads the stress databases, stores the stress 
data, and uses the deformed nodal coordinate values from the first run. Other parameters associated 
with the original run may also be set and are described in the section Keyword-Based Control 
Features of the DYNA3D manual. 

Example: Generate a NIKE-DYNA link file with ParaDyn 

Consider a run with an input file, d3st, specifying the name stress on the nikefile keyword-input 
line. A second run will use the generated stress database by specifying the m= option on the 
execute line and new DYNA3D options in the input file, d3stl. 

paradyn i=d3st 
paradyn i=d3stl m=stress g=glt 

In the second run, the plot state database file family is given a new root name, gEt. 
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4.3 Multiple Versions of Running Restart Files 

The following describes a new capability for generating multiple versions of a running restart dump 
file. The option is selected with a keyword input and optionally specifying the running restart file 
names on the ParaDyn execute line. The keyword input is 

numrrf m e n  

The integer value, nvers, specifies the number of different versions of the running restart file to 
save on disk. The running restart family names are incremented through a set of family members 
until nvers of them have been written. Once this limit is reached the next running restart over writes 
the first running restart file in the set. The examples below illustrate the cycling through of the 
names of the versions of the running restart files. 

The number of cycles between the running restart dump files is selected as usual in the fifth data 
field, columns 36-40, of DYNA3D control card 6. The default names for the running restart file for 
ParaDyn are rsfnnnrnrn, where nnn is the three-digit processor number and mm is the family- 
member number. To select the name of the running restart file, use the a= option on the ParaDyn 
execute line. 

Example: Specify multiple versions of the running restart file 

Set up the input file to save three different versions of the running restart file. 

numrrf 3 
endfree 

Suppose a problem is run for 100 cycles and the number of cycles between running restart dumps 
is 30. The files generated for a 4-processor run will be: 

rsfOOOO1 rsfOOlOl rsf00201 rsf00301 
rsf00002 rsf00102 rsf00202 rsfOO302 
rsf00003 rsfOO103 rsf00203 rsf00303 

(cycles 30) 
(cycles 60) 
(cycles 90) 

Suppose this problem is run for another 150 cycles, then the running restart files will be 
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rsf00002 rsfOO 102 rsf00202 rsf00302 
rsfOOOO1 rsfOO101 rsf00201 rsf00301 
rsf00003 rsfOO103 rsf00203 rsfOO303 
rsfOOOO1 rsfOOlO1 rsf00201 rsf00301 
rsf00002 rsfOO 102 rsfOO202 rsf00302 

(cycle 150) 
(cycle 120) 
(cycle 180) 
(cycle 210) 
(cycle 240) 

In the above, the cycle (30,60,90) files were over written by the cycle (120, 150, 180) files, 
respectively. And finally, the cycle (210,240) files over write the cycle (120, 150) files. 

Example: Select a new name for the running restart files 
Suppose instead in the previous example that the initial problem is restarted from cycle 60 and runs 
up to cycle 250. A new name can be selected for the versions of the running restart files as follows: 

paradyn i=inrest,r=rsf00002,a=nrf 

The files generated will be 

nrfOOOOl nrfOOlOl nrf00201 nrf00301 (cycle 90) 
nrf00002 nrf00102 nrf00202 nrf00302 (cycle 120) 
nrf00003 nrf00103 nrf00203 nrf00303 (cycle 150) 
nrfOOOOl nrfOOlOl nrf00201 nrf00301 (cycle 180) 
nrf00002 nrf00102 nrf00202 nrf00302 (cycle 210) 
nrf00003 nrf00103 nrf00203 nrf00303 (cycle 240) 

4.4 Nodal Force Output 

The nodal force output is described in the keyword input and Section 4.47 of the DYNA3D input 
manual. Nodal force output is selected using the keyword input variable nfrout. The value of this 
keyword input variable is the total number of nodes’that will be written into the output files. 

Output format 
For each time at which the nodal forces are desired, the following set of data are written: 

Card 1 (E12.5,lx,i8) 
Col. 1-12 Time at which forces have been computed E12.5 
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Col. 14-20 Number of nodes (nfrout) I8 

Cards 2 to Card l+nfrout (i8,3e12.7) 
Col. 1-8 Nodenumber I8 
Col. 9-20 Force in the x-direction E12.5 
Col. 21-32 Force in the y-direction E12.5 
Col. 33-44 Force in the z-direction E12.5 

The name of the text output file containing the nodal force data is nodfrc for a DYNA3D run. 

ParaDyn generates two kinds of text output files. The first output file (generated by processor zero 
only) contains the times at which the forces are output for the selected nodes. The name of this file 
is nfrctimes. The remaining output data, the node numbers and three components of the force, are 
written to a set of files generated by all of the processors. The files are named nfrcnnn, where nnn 
is the three-digit processor number. By separating the data in this way, the following UNIX utilities 
can be used to combine the data into a single file, with the time steps for the output at the top, 
followed by the list of nodes and forces for each time step. 

cat nfrc* I sort -n - > forceout 

Example: Combine nodal force output from ParaDyn 
The following is an example in which two nodes, (12,144), were selected and written at three 
different time steps. The nodes were merged using the files from the processors with the previous 
CAT and SORT utilites. The results are 

0.00000E+00 2 
0.446273-06 2 
0.893443-06 2 

12 O.OOOOOE+OO 0.00000E+00 O.OOOOOE+OO 
12 0.00000E+00 0.00000E+00 0.00000E+00 
12 0.00000E+00 0.00000E+00 O.oooooE+oO 
144 O.OOOOOE+OO O.OOOOOE+OO -0.14000E-11 
144 O.OOOOOE+OO O.OOOOOE+OO -0.14000E-11 
144 O.OOOOOE+OO O.OOOOOE+OO -0.15000E-11 

~ ~ 
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To eliminate the time stamp data at the beginning of the file (and read it from the file nfrctimes 
instead in a post-processor), use the following UNIX utilities for combining the output. 

cat nfrc??? I sort -n - > forceout 

4.5 TOPAZ3D Temperature Input 

The TAURUS database with nodal temperature data generated by the TOPAZ3D program can be 
input to a ParaDyn simulation. Input options are completely compatible with the DYNA3D/ 
TOPAZ3D temperature input options. The restriction for using this feature is that the same mesh 
must be used for both programs. 

In the future we expect to develop a MIL1 database to link TOPAZ3D and DYNA3DRaraDyn. The 
utility XMILICS currently has the capability to both combine and split MILT databases into a 
specified number of processors. This will allow a link between a parallel or single processor 
TOPAZ3D simulation and a ParaDyn simulation where the number of processors used for each 
code is not restricted to be the same. 

4.6 TAURUS Database Files 

Many of the new ParaDyn code developments require the use of the flexibile file formats provided 
by the MILI YO library. For this reason, TAURUS databases are no longer generated by default in 
ParaDyn. Keyword input may be used to select TAURUS databases for those special circumstances 
where they may be needed. An example may be a restart from an older run ParaDyn run. The file 
name sequences for TAURUS databases is shown in Figure 15. 

TAURUS plot databases are selected in the keyword input section of the DYNA3DRaraDyn input 
file. Both MIL1 and TAURUS databases can be output in the same mn. This capability is usually 
used by the code developers and not recommended for long analysis runs. The following two 
keywords select and deselect the TAURUS and MILI databases. 

mili-plot miZijZug 
taurus-plot taurusflag 
endfree 
The value of either flags is set to 1 to select the database type and is set to 0 to deselect the database 

type. 
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1. State and time history databases: Root names plt and tht 

aming convention 
during a ParaDyn simulation. 

I 

The PGRIZ utiltity is only available on the Livermore computer systems. This utility combines the 
TAURUS databases in memory when visualizing the plot files on the parallel computer. The 
execute line for the PGRIZ tool is 

pgriz -i filename -p partjile 0 0 

The first argument,fiZename, is the full name of the first file in the database family for processor 0. 
The second argument, partfile, is the name of the partition file. The last two arguments are always 
set to zero. 

Example: PGRIZ execute line 
An example input line for the test case in the previous example is 

pgriz -i plt -p d3samp1.4 

The utilities XMILICS and COMBINETHS combine the Taurus state and time history databases 
from a ParaDyn run. The state databases can be viewed with GRIZ4 and the time history databases 
with THUG. 

The XMlLICS execute lines is 
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xmilics -i injileroot -0 outJileroot -c partjile 

The first and second arguments are the root names of the input TAURUS database and the 
combined output MIL1 database. The third argument is the name of the partition file. 

The COMBINETHS execute line is 

combineths infileroot outjileroot partJiZe 0 0 

The first argument is the root name for the input families of time history databases and the second 
argument is the root name for the output family of files with the combined databases. The last two 
arguments must both be 0. 

Example: XMILICS and COMBINETHS execute lines 
Consider the state and time history databases for the previous four-processor example. The root 
names for the plot databases and time history databases are plt and ths, respectively. The following 
execute lines will generate an output family of files with the root names oplt and oths, respectively. 

xmilics -i m-p -0 oplt -c d3samp1.4 
combineths tht otht d3samp1.4 0 0 

XMILICS output files 
rnoutA, mout00, rnoutol, mout03, . . . .  

COMBINETHS output files 
otht00, otht01, otht02 ,.... 

Figure 16. The names of files in output databases from XMILICS and COMBINETHS. 

On the workstation, these databases are viewed with the GFUZA and THUG utilities. 

griz4s -i oplt00 
thug -i otht 
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5.0 FUTURE ENHANCEMENTS 

Parallel algorithm design is an integral part of the software development cycle for the DYNA3D/ 
ParaDyn software. The Design Phase includes the design of the approximate technique for the 
mechanics, the algorithm design for single processor computers, and the complementing design for 
parallel computers. Once a design is in place, frequently the software development proceeds with 
a serial (DYNA3D) implementation and testing. This then is followed by a parallel implementation 
and testing. The following features implemented in DYNA3D are future enhancements to the 
ParaDyn software. 

1. Contact algorithms 
LaGrange constraint forms of contact. 

2. Rigid body algorithms 
Deformable and rigid material switching algorithm. 

3. Boundary conditions 
Rigid nodal constraint sets. 

4. New elements 
Cohesive and delaminated elements. 

There are two DYNA3D features which will not be implemented in parallel as follows: 

1. Coupled codes 
Madymo DYNA3D link capability. 

2. Contact algorithms 
Slide line type 11. This algorithm is an obsolete version of the SAND algorithm. The replacement 
algorithm in sliding interface type 14 is implemented in parallel. 
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